72

Fast Self-Supervised depth and mask aware Association for Multi-Object Tracking

Main:9 Pages
2 Figures
Bibliography:3 Pages
4 Tables
Abstract

Multi-object tracking (MOT) methods often rely on Intersection-over-Union (IoU) for association. However, this becomes unreliable when objects are similar or occluded. Also, computing IoU for segmentation masks is computationally expensive. In this work, we use segmentation masks to capture object shapes, but we do not compute segmentation IoU. Instead, we fuse depth and mask features and pass them through a compact encoder trained self-supervised. This encoder produces stable object representations, which we use as an additional similarity cue alongside bounding box IoU and re-identification features for matching. We obtain depth maps from a zero-shot depth estimator and object masks from a promptable visual segmentation model to obtain fine-grained spatial cues. Our MOT method is the first to use the self-supervised encoder to refine segmentation masks without computing masks IoU. MOT can be divided into joint detection-ReID (JDR) and tracking-by-detection (TBD) models. The latter are computationally more efficient. Experiments of our TBD method on challenging benchmarks with non-linear motion, occlusion, and crowded scenes, such as SportsMOT and DanceTrack, show that our method outperforms the TBD state-of-the-art on most metrics, while achieving competitive performance on simpler benchmarks with linear motion, such as MOT17.

View on arXiv
Comments on this paper