All Papers
Title |
|---|
Title |
|---|

Control barrier functions (CBFs) have seen widespread success in providing forward invariance and safety guarantees for dynamical control systems. A crucial limitation of discrete-time formulations is that CBFs that are nonconcave in their argument require the solution of nonconvex optimization problems to compute safety-preserving control inputs, which inhibits real-time computation of control inputs guaranteeing forward invariance. This paper presents a novel method for computing safety-preserving control inputs for discrete-time systems with nonconvex safety sets, utilizing convex optimization and the recently developed class of matrix control barrier function techniques. The efficacy of our methods is demonstrated through numerical simulations on a bicopter system.
View on arXiv