135

Deliberative Dynamics and Value Alignment in LLM Debates

Main:9 Pages
13 Figures
Bibliography:5 Pages
1 Tables
Appendix:19 Pages
Abstract

As large language models (LLMs) are increasingly deployed in sensitive everyday contexts - offering personal advice, mental health support, and moral guidance - understanding their elicited values in navigating complex moral reasoning is essential. Most evaluations study this sociotechnical alignment through single-turn prompts, but it is unclear if these findings extend to multi-turn settings where values emerge through dialogue, revision, and consensus. We address this gap using LLM debate to examine deliberative dynamics and value alignment in multi-turn settings by prompting subsets of three models (GPT-4.1, Claude 3.7 Sonnet, and Gemini 2.0 Flash) to collectively assign blame in 1,000 everyday dilemmas from Reddit's "Am I the Asshole" community. We use both synchronous (parallel responses) and round-robin (sequential responses) formats to test order effects and verdict revision. Our findings show striking behavioral differences. In the synchronous setting, GPT showed strong inertia (0.6-3.1% revision rates) while Claude and Gemini were far more flexible (28-41%). Value patterns also diverged: GPT emphasized personal autonomy and direct communication, while Claude and Gemini prioritized empathetic dialogue. Certain values proved especially effective at driving verdict changes. We further find that deliberation format had a strong impact on model behavior: GPT and Gemini stood out as highly conforming relative to Claude, with their verdict behavior strongly shaped by order effects. These results show how deliberation format and model-specific behaviors shape moral reasoning in multi-turn interactions, underscoring that sociotechnical alignment depends on how systems structure dialogue as much as on their outputs.

View on arXiv
Comments on this paper