ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.10028
92
0

Efficient Onboard Vision-Language Inference in UAV-Enabled Low-Altitude Economy Networks via LLM-Enhanced Optimization

11 October 2025
Yang Li
Ruichen Zhang
Yinqiu Liu
Guangyuan Liu
Zhu Han
Abbas Jamalipour
Xianbin Wang
Dong In Kim
ArXiv (abs)PDFHTMLGithub (242★)
Main:9 Pages
12 Figures
Appendix:7 Pages
Abstract

The rapid advancement of Low-Altitude Economy Networks (LAENets) has enabled a variety of applications, including aerial surveillance, environmental sensing, and semantic data collection. To support these scenarios, unmanned aerial vehicles (UAVs) equipped with onboard vision-language models (VLMs) offer a promising solution for real-time multimodal inference. However, ensuring both inference accuracy and communication efficiency remains a significant challenge due to limited onboard resources and dynamic network conditions. In this paper, we first propose a UAV-enabled LAENet system model that jointly captures UAV mobility, user-UAV communication, and the onboard visual question answering (VQA) pipeline. Based on this model, we formulate a mixed-integer non-convex optimization problem to minimize task latency and power consumption under user-specific accuracy constraints. To solve the problem, we design a hierarchical optimization framework composed of two parts: (i) an Alternating Resolution and Power Optimization (ARPO) algorithm for resource allocation under accuracy constraints, and (ii) a Large Language Model-augmented Reinforcement Learning Approach (LLaRA) for adaptive UAV trajectory optimization. The large language model (LLM) serves as an expert in refining reward design of reinforcement learning in an offline fashion, introducing no additional latency in real-time decision-making. Numerical results demonstrate the efficacy of our proposed framework in improving inference performance and communication efficiency under dynamic LAENet conditions.

View on arXiv
Comments on this paper