160
v1v2 (latest)

Dejavu: Towards Experience Feedback Learning for Embodied Intelligence

Main:8 Pages
15 Figures
Bibliography:2 Pages
10 Tables
Appendix:15 Pages
Abstract

Embodied agents face a fundamental limitation: once deployed in real-world environments to perform specific tasks, they are unable to acquire additional knowledge to enhance task performance. In this paper, we propose a general post-deployment learning framework Dejavu, which employs an Experience Feedback Network (EFN) and augments the frozen Vision-Language-Action (VLA) policy with retrieved execution memories. EFN identifies contextually prior action experiences and conditions action prediction on this retrieved guidance. We adopt reinforcement learning with semantic similarity rewards to train EFN, ensuring that the predicted actions align with past behaviors under current observations. During deployment, EFN continually enriches its memory with new trajectories, enabling the agent to exhibit "learning from experience". Experiments across diverse embodied tasks show that EFN improves adaptability, robustness, and success rates over frozen baselines. We provide code and demo in our supplementary material.

View on arXiv
Comments on this paper