ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.10245
93
0

Kernel Treatment Effects with Adaptively Collected Data

11 October 2025
Houssam Zenati
Bariscan Bozkurt
Arthur Gretton
ArXiv (abs)PDFHTMLGithub
Main:10 Pages
11 Figures
Bibliography:4 Pages
3 Tables
Appendix:35 Pages
Abstract

Adaptive experiments improve efficiency by adjusting treatment assignments based on past outcomes, but this adaptivity breaks the i.i.d. assumptions that underpins classical asymptotics. At the same time, many questions of interest are distributional, extending beyond average effects. Kernel treatment effects (KTE) provide a flexible framework by representing counterfactual outcome distributions in an RKHS and comparing them via kernel distances. We present the first kernel-based framework for distributional inference under adaptive data collection. Our method combines doubly robust scores with variance stabilization to ensure asymptotic normality via a Hilbert-space martingale CLT, and introduces a sample-fitted stabilized test with valid type-I error. Experiments show it is well calibrated and effective for both mean shifts and higher-moment differences, outperforming adaptive baselines limited to scalar effects.

View on arXiv
Comments on this paper