84

Mitigating Hallucination in Multimodal Reasoning via Functional Attention Control

Main:10 Pages
5 Figures
Bibliography:4 Pages
7 Tables
Appendix:17 Pages
Abstract

Multimodal large reasoning models (MLRMs) are rapidly advancing vision-language reasoning and are emerging as a foundation for cross-modal intelligence. Hallucination remains a persistent failure mode, manifesting itself as erroneous reasoning chains and misinterpretation of visual content. In this study, we observe that attention heads exhibit a staged division: shallow heads predominantly serve perception, while deeper heads shift toward symbolic reasoning, revealing two major causes of hallucination, namely perceptual bias and reasoning drift. To address these issues, we propose a lightweight and interpretable two-step plugin, Functional Head Identification and Class-conditioned Rescaling, which locates perception- and reasoning-oriented heads and regulates their contributions without retraining. Evaluations on three real-world MLRMs (Kimi-VL, Ocean-R1, R1-Onevision), six benchmarks across three domains, and four baselines show that our plugin achieves an average improvement of 5% and up to 15%, with only <1% additional computation and 9% of baseline latency. Our approach is completely model-agnostic and significantly enhances both the reliability and interpretability of the off-the-shelf MLRMs, thereby enabling their safe deployment in high-stakes applications. Our code is available atthis https URL.

View on arXiv
Comments on this paper