ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.10436
76
0

Post-Quantum Cryptography and Quantum-Safe Security: A Comprehensive Survey

12 October 2025
Gaurab Chhetri
Shriyank Somvanshi
Pavan Hebli
Shamyo Brotee
Subasish Das
ArXiv (abs)PDFHTMLGithub
Main:26 Pages
7 Figures
Bibliography:6 Pages
4 Tables
Appendix:1 Pages
Abstract

Post-quantum cryptography (PQC) is moving from evaluation to deployment as NIST finalizes standards for ML-KEM, ML-DSA, and SLH-DSA. This survey maps the space from foundations to practice. We first develop a taxonomy across lattice-, code-, hash-, multivariate-, isogeny-, and MPC-in-the-Head families, summarizing security assumptions, cryptanalysis, and standardization status. We then compare performance and communication costs using representative, implementation-grounded measurements, and review hardware acceleration (AVX2, FPGA/ASIC) and implementation security with a focus on side-channel resistance. Building upward, we examine protocol integration (TLS, DNSSEC), PKI and certificate hygiene, and deployment in constrained and high-assurance environments (IoT, cloud, finance, blockchain). We also discuss complementarity with quantum technologies (QKD, QRNGs) and the limits of near-term quantum computing. Throughout, we emphasize crypto-agility, hybrid migration, and evidence-based guidance for operators. We conclude with open problems spanning parameter agility, leakage-resilient implementations, and domain-specific rollout playbooks. This survey aims to be a practical reference for researchers and practitioners planning quantum-safe systems, bridging standards, engineering, and operations.

View on arXiv
Comments on this paper