ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.10648
98
0
v1v2 (latest)

JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding

12 October 2025
Chenlong He
Zijing Dong
Min Li
Zhijian Hao
Leilei Huang
    VLM
ArXiv (abs)PDFHTMLGithub
Main:4 Pages
4 Figures
Bibliography:1 Pages
Abstract

Just Noticeable Distortion (JND)-guided pre-filter is a promising technique for improving the perceptual compression efficiency of image coding. However, existing methods are often computationally expensive, and the field lacks standardized benchmarks for fair comparison. To address these challenges, this paper introduces a twofold contribution. First, we develop and open-source FJNDF-Pytorch, a unified benchmark for frequency-domain JND-Guided pre-filters. Second, leveraging this platform, we propose a complete learning framework for a novel, lightweight Convolutional Neural Network (CNN). Experimental results demonstrate that our proposed method achieves state-of-the-art compression efficiency, consistently outperforming competitors across multiple datasets and encoders. In terms of computational cost, our model is exceptionally lightweight, requiring only 7.15 GFLOPs to process a 1080p image, which is merely 14.1% of the cost of recent lightweight network. Our work presents a robust, state-of-the-art solution that excels in both performance and efficiency, supported by a reproducible research platform. The open-source implementation is available atthis https URL.

View on arXiv
Comments on this paper