Provable Anytime Ensemble Sampling Algorithms in Nonlinear Contextual Bandits
We provide a unified algorithmic framework for ensemble sampling in nonlinear contextual bandits and develop corresponding regret bounds for two most common nonlinear contextual bandit settings: Generalized Linear Ensemble Sampling (\texttt{GLM-ES}) for generalized linear bandits and Neural Ensemble Sampling (\texttt{Neural-ES}) for neural contextual bandits. Both methods maintain multiple estimators for the reward model parameters via maximum likelihood estimation on randomly perturbed data. We prove high-probability frequentist regret bounds of for \texttt{GLM-ES} and for \texttt{Neural-ES}, where is the dimension of feature vectors, is the effective dimension of a neural tangent kernel matrix, and is the number of rounds. These regret bounds match the state-of-the-art results of randomized exploration algorithms in nonlinear contextual bandit settings. In the theoretical analysis, we introduce techniques that address challenges specific to nonlinear models. Practically, we remove fixed-time horizon assumptions by developing anytime versions of our algorithms, suitable when is unknown. Finally, we empirically evaluate \texttt{GLM-ES}, \texttt{Neural-ES}, and their anytime variants, demonstrating strong performance. Overall, our results establish ensemble sampling as a provable and practical randomized exploration approach for nonlinear contextual bandits.
View on arXiv