ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.11175
81
0

Reliable Cross-modal Alignment via Prototype Iterative Construction

13 October 2025
Xiang Ma
Litian Xu
Lexin Fang
Caiming Zhang
Lizhen Cui
ArXiv (abs)PDFHTML
Main:8 Pages
6 Figures
Bibliography:1 Pages
5 Tables
Abstract

Cross-modal alignment is an important multi-modal task, aiming to bridge the semantic gap between different modalities. The most reliable fundamention for achieving this objective lies in the semantic consistency between matched pairs. Conventional methods implicitly assume embeddings contain solely semantic information, ignoring the impact of non-semantic information during alignment, which inevitably leads to information bias or even loss. These non-semantic information primarily manifest as stylistic variations in the data, which we formally define as style information. An intuitive approach is to separate style from semantics, aligning only the semantic information. However, most existing methods distinguish them based on feature columns, which cannot represent the complex coupling relationship between semantic and style information. In this paper, we propose PICO, a novel framework for suppressing style interference during embedding interaction. Specifically, we quantify the probability of each feature column representing semantic information, and regard it as the weight during the embedding interaction. To ensure the reliability of the semantic probability, we propose a prototype iterative construction method. The key operation of this method is a performance feedback-based weighting function, and we have theoretically proven that the function can assign higher weight to prototypes that bring higher performance improvements. Extensive experiments on various benchmarks and model backbones demonstrate the superiority of PICO, outperforming state-of-the-art methods by 5.2\%-14.1\%.

View on arXiv
Comments on this paper