ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.11484
8
0

Rescaling-Aware Training for Efficient Deployment of Deep Learning Models on Full-Integer Hardware

13 October 2025
Lion Mueller
Alberto García-Ortiz
Ardalan Najafi
Adam Fuks
Lennart Bamberg
    MQ
ArXiv (abs)PDFHTML
Main:3 Pages
4 Figures
Bibliography:1 Pages
2 Tables
Abstract

Integer AI inference significantly reduces computational complexity in embedded systems. Quantization-aware training (QAT) helps mitigate accuracy degradation associated with post-training quantization but still overlooks the impact of integer rescaling during inference, which is a hardware costly operation in integer-only AI inference. This work shows that rescaling cost can be dramatically reduced post-training, by applying a stronger quantization to the rescale multiplicands at no model-quality loss. Furthermore, we introduce Rescale-Aware Training, a fine tuning method for ultra-low bit-width rescaling multiplicands. Experiments show that even with 8x reduced rescaler widths, the full accuracy is preserved through minimal incremental retraining. This enables more energy-efficient and cost-efficient AI inference for resource-constrained embedded systems.

View on arXiv
Comments on this paper