Massive Activations are the Key to Local Detail Synthesis in Diffusion Transformers

Diffusion Transformers (DiTs) have recently emerged as a powerful backbone for visual generation. Recent observations reveal \emph{Massive Activations} (MAs) in their internal feature maps, yet their function remains poorly understood. In this work, we systematically investigate these activations to elucidate their role in visual generation. We found that these massive activations occur across all spatial tokens, and their distribution is modulated by the input timestep embeddings. Importantly, our investigations further demonstrate that these massive activations play a key role in local detail synthesis, while having minimal impact on the overall semantic content of output. Building on these insights, we propose \textbf{D}etail \textbf{G}uidance (\textbf{DG}), a MAs-driven, training-free self-guidance strategy to explicitly enhance local detail fidelity for DiTs. Specifically, DG constructs a degraded ``detail-deficient'' model by disrupting MAs and leverages it to guide the original network toward higher-quality detail synthesis. Our DG can seamlessly integrate with Classifier-Free Guidance (CFG), enabling further refinements of fine-grained details. Extensive experiments demonstrate that our DG consistently improves fine-grained detail quality across various pre-trained DiTs (\eg, SD3, SD3.5, and Flux).
View on arXiv