ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.11677
244
0
v1v2 (latest)

Instruction Tuning Chronologically Consistent Language Models

13 October 2025
Songrun He
Linying Lv
Asaf Manela
Jimmy Wu
    BDLSyDa
ArXiv (abs)PDFHTML
Main:19 Pages
3 Figures
Bibliography:2 Pages
2 Tables
Abstract

We introduce a family of chronologically consistent, instruction-tuned large language models to eliminate lookahead bias. Each model is trained only on data available before a clearly defined knowledge-cutoff date, ensuring strict temporal separation from any post-cutoff data. The resulting framework offers (i) a simple, conversational chat interface, (ii) fully open, fixed model weights that guarantee replicability, and (iii) a conservative lower bound on forecast accuracy, isolating the share of predictability that survives once training leakage is removed. Together, these features provide researchers with an easy-to-use generative AI tool useful for a wide range of prediction tasks that is free of lookahead bias.

View on arXiv
Comments on this paper