All Papers
0 / 0 papers shown
Title |
|---|
Title |
|---|

New Large Language Models (LLMs) become available every few weeks, and modern application developers confronted with the unenviable task of having to decide if they should switch to a new model. While human evaluation remains the gold standard, it is costly and unscalable. The state-of-the-art approach is to use LLMs as evaluators ( LLM-as-a-judge), but this suffers from a critical flaw: LLMs exhibit a strong positive bias. We provide empirical evidence showing that while LLMs can identify valid outputs with high accuracy (i.e., True Positive Rate 96%), they are remarkably poor at identifying invalid ones (i.e., True Negative Rate <25%). This systematic bias, coupled with class imbalance, often leads to inflated reliability scores.
View on arXiv