171

Rethinking the Role of Dynamic Sparse Training for Scalable Deep Reinforcement Learning

Main:12 Pages
26 Figures
Bibliography:6 Pages
3 Tables
Appendix:21 Pages
Abstract

Scaling neural networks has driven breakthrough advances in machine learning, yet this paradigm fails in deep reinforcement learning (DRL), where larger models often degrade performance due to unique optimization pathologies such as plasticity loss. While recent works show that dynamically adapting network topology during training can mitigate these issues, existing studies have three critical limitations: (1) applying uniform dynamic training strategies across all modules despite encoder, critic, and actor following distinct learning paradigms, (2) focusing evaluation on basic architectures without clarifying the relative importance and interaction between dynamic training and architectural improvements, and (3) lacking systematic comparison between different dynamic approaches including sparse-to-sparse, dense-to-sparse, and sparse-to-dense. Through comprehensive investigation across modules and architectures, we reveal that dynamic sparse training strategies provide module-specific benefits that complement the primary scalability foundation established by architectural improvements. We finally distill these insights into Module-Specific Training (MST), a practical framework that further exploits the benefits of architectural improvements and demonstrates substantial scalability gains across diverse RL algorithms without algorithmic modifications.

View on arXiv
Comments on this paper