ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.12114
12
1

Self-Supervised Selective-Guided Diffusion Model for Old-Photo Face Restoration

14 October 2025
Wenjie Li
Xiangyi Wang
Heng Guo
Guangwei Gao
Zhanyu Ma
    DiffM
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
11 Figures
Bibliography:3 Pages
4 Tables
Abstract

Old-photo face restoration poses significant challenges due to compounded degradations such as breakage, fading, and severe blur. Existing pre-trained diffusion-guided methods either rely on explicit degradation priors or global statistical guidance, which struggle with localized artifacts or face color. We propose Self-Supervised Selective-Guided Diffusion (SSDiff), which leverages pseudo-reference faces generated by a pre-trained diffusion model under weak guidance. These pseudo-labels exhibit structurally aligned contours and natural colors, enabling region-specific restoration via staged supervision: structural guidance applied throughout the denoising process and color refinement in later steps, aligned with the coarse-to-fine nature of diffusion. By incorporating face parsing maps and scratch masks, our method selectively restores breakage regions while avoiding identity mismatch. We further construct VintageFace, a 300-image benchmark of real old face photos with varying degradation levels. SSDiff outperforms existing GAN-based and diffusion-based methods in perceptual quality, fidelity, and regional controllability. Code link:this https URL.

View on arXiv
Comments on this paper