ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.12169
16
0
v1v2 (latest)

Hybrid Terrain-Aware Path Planning: Integrating VD--RRT\(^{*}\) Exploration and VD--D\(^{*}\) Lite Repair

14 October 2025
Akshay Naik
William R. Norris
Dustin Nottage
A. Soylemezoglu
ArXiv (abs)PDFHTML
Main:7 Pages
11 Figures
Bibliography:1 Pages
4 Tables
Abstract

Autonomous ground vehicles operating off-road must plan curvature-feasible paths while accounting for spatially varying soil strength and slope hazards in real time. We present a continuous state--cost metric that combines a Bekker pressure--sinkage model with elevation-derived slope and attitude penalties. The resulting terrain cost field is analytic, bounded, and monotonic in soil modulus and slope, ensuring well-posed discretization and stable updates under sensor noise. This metric is evaluated on a lattice with exact steering primitives: Dubins and Reeds--Shepp motions for differential drive and time-parameterized bicycle arcs for Ackermann steering. Global exploration is performed using Vehicle-Dynamics RRT\(^{*}\), while local repair is managed by Vehicle-Dynamics D\(^{*}\) Lite, enabling millisecond-scale replanning without heuristic smoothing. By separating the terrain--vehicle model from the planner, the framework provides a reusable basis for deterministic, sampling-based, or learning-driven planning in deformable terrain. Hardware trials on an off-road platform demonstrate real-time navigation across soft soil and slope transitions, supporting reliable autonomy in unstructured environments.

View on arXiv
Comments on this paper