12

BIGFix: Bidirectional Image Generation with Token Fixing

Main:9 Pages
13 Figures
Bibliography:4 Pages
10 Tables
Appendix:10 Pages
Abstract

Recent advances in image and video generation have raised significant interest from both academia and industry. A key challenge in this field is improving inference efficiency, as model size and the number of inference steps directly impact the commercial viability of generative models while also posing fundamental scientific challenges. A promising direction involves combining auto-regressive sequential token modeling with multi-token prediction per step, reducing inference time by up to an order of magnitude. However, predicting multiple tokens in parallel can introduce structural inconsistencies due to token incompatibilities, as capturing complex joint dependencies during training remains challenging. Traditionally, once tokens are sampled, there is no mechanism to backtrack and refine erroneous predictions. We propose a method for self-correcting image generation by iteratively refining sampled tokens. We achieve this with a novel training scheme that injects random tokens in the context, improving robustness and enabling token fixing during sampling. Our method preserves the efficiency benefits of parallel token prediction while significantly enhancing generation quality. We evaluate our approach on image generation using the ImageNet-256 and CIFAR-10 datasets, as well as on video generation with UCF-101 and NuScenes, demonstrating substantial improvements across both modalities.

View on arXiv
Comments on this paper