ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.12463
64
1

Resource-sensitive but language-blind: Community size and not grammatical complexity better predicts the accuracy of Large Language Models in a novel Wug Test

14 October 2025
Nikoleta Pantelidou
Evelina Leivada
Paolo Morosi
ArXiv (abs)PDFHTML
Main:15 Pages
4 Tables
Abstract

The linguistic abilities of Large Language Models are a matter of ongoing debate. This study contributes to this discussion by investigating model performance in a morphological generalization task that involves novel words. Using a multilingual adaptation of the Wug Test, six models were tested across four partially unrelated languages (Catalan, English, Greek, and Spanish) and compared with human speakers. The aim is to determine whether model accuracy approximates human competence and whether it is shaped primarily by linguistic complexity or by the quantity of available training data. Consistent with previous research, the results show that the models are able to generalize morphological processes to unseen words with human-like accuracy. However, accuracy patterns align more closely with community size and data availability than with structural complexity, refining earlier claims in the literature. In particular, languages with larger speaker communities and stronger digital representation, such as Spanish and English, revealed higher accuracy than less-resourced ones like Catalan and Greek. Overall, our findings suggest that model behavior is mainly driven by the richness of linguistic resources rather than by sensitivity to grammatical complexity, reflecting a form of performance that resembles human linguistic competence only superficially.

View on arXiv
Comments on this paper