ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.12660
56
0

On the Use of Hierarchical Vision Foundation Models for Low-Cost Human Mesh Recovery and Pose Estimation

14 October 2025
Shuhei Tarashima
Yushan Wang
Norio Tagawa
    3DH
ArXiv (abs)PDFHTMLGithub (1775★)
Main:9 Pages
5 Figures
Bibliography:2 Pages
4 Tables
Appendix:1 Pages
Abstract

In this work, we aim to develop simple and efficient models for human mesh recovery (HMR) and its predecessor task, human pose estimation (HPE). State-of-the-art HMR methods, such as HMR2.0 and its successors, rely on large, non-hierarchical vision transformers as encoders, which are inherited from the corresponding HPE models like ViTPose. To establish baselines across varying computational budgets, we first construct three lightweight HMR2.0 variants by adapting the corresponding ViTPose models. In addition, we propose leveraging the early stages of hierarchical vision foundation models (VFMs), including Swin Transformer, GroupMixFormer, and VMamba, as encoders. This design is motivated by the observation that intermediate stages of hierarchical VFMs produce feature maps with resolutions comparable to or higher than those of non-hierarchical counterparts. We conduct a comprehensive evaluation of 27 hierarchical-VFM-based HMR and HPE models, demonstrating that using only the first two or three stages achieves performance on par with full-stage models. Moreover, we show that the resulting truncated models exhibit better trade-offs between accuracy and computational efficiency compared to existing lightweight alternatives.

View on arXiv
Comments on this paper