12

Machine Learning-Based Ultrasonic Weld Characterization Using Hierarchical Wave Modeling and Diffusion-Driven Distribution Alignment

Main:29 Pages
16 Figures
Bibliography:5 Pages
4 Tables
Appendix:6 Pages
Abstract

Automated ultrasonic weld inspection remains a significant challenge in the nondestructive evaluation (NDE) community to factors such as limited training data (due to the complexity of curating experimental specimens or high-fidelity simulations) and environmental volatility of many industrial settings (resulting in the corruption of on-the-fly measurements). Thus, an end-to-end machine learning (ML) workflow for acoustic weld inspection in realistic (i.e., industrial) settings has remained an elusive goal. This work addresses the challenges of data curation and signal corruption by proposing workflow consisting of a reduced-order modeling scheme, diffusion based distribution alignment, and U-Net-based segmentation and inversion. A reduced-order Helmholtz model based on Lamb wave theory is used to generate a comprehensive dataset over varying weld heterogeneity and crack defects. The relatively inexpensive low-order solutions provide a robust training dateset for inversion models which are refined through a transfer learning stage using a limited set of full 3D elastodynamic simulations. To handle out-of-distribution (OOD) real-world measurements with varying and unpredictable noise distributions, i.e., Laser Doppler Vibrometry scans, guided diffusion produces in-distribution representations of OOD experimental LDV scans which are subsequently processed by the inversion models. This integrated framework provides an end-to-end solution for automated weld inspection on real data.

View on arXiv
Comments on this paper