ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.13136
20
1

Privacy-Aware Framework of Robust Malware Detection in Indoor Robots: Hybrid Quantum Computing and Deep Neural Networks

15 October 2025
Tan Le
Van Le
Sachin Shetty
ArXiv (abs)PDFHTML
Main:12 Pages
16 Figures
Bibliography:2 Pages
1 Tables
Abstract

Indoor robotic systems within Cyber-Physical Systems (CPS) are increasingly exposed to Denial of Service (DoS) attacks that compromise localization, control and telemetry integrity. We propose a privacy-aware malware detection framework for indoor robotic systems, which leverages hybrid quantum computing and deep neural networks to counter DoS threats in CPS, while preserving privacy information. By integrating quantum-enhanced feature encoding with dropout-optimized deep learning, our architecture achieves up to 95.2% detection accuracy under privacy-constrained conditions. The system operates without handcrafted thresholds or persistent beacon data, enabling scalable deployment in adversarial environments. Benchmarking reveals robust generalization, interpretability and resilience against training instability through modular circuit design. This work advances trustworthy AI for secure, autonomous CPS operations.

View on arXiv
Comments on this paper