ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.13445
122
0

Robust Minimax Boosting with Performance Guarantees

15 October 2025
Santiago Mazuelas
Verónica Álvarez
    NoLa
ArXiv (abs)PDFHTMLGithub
Main:10 Pages
6 Figures
Bibliography:2 Pages
5 Tables
Appendix:13 Pages
Abstract

Boosting methods often achieve excellent classification accuracy, but can experience notable performance degradation in the presence of label noise. Existing robust methods for boosting provide theoretical robustness guarantees for certain types of label noise, and can exhibit only moderate performance degradation. However, previous theoretical results do not account for realistic types of noise and finite training sizes, and existing robust methods can provide unsatisfactory accuracies, even without noise. This paper presents methods for robust minimax boosting (RMBoost) that minimize worst-case error probabilities and are robust to general types of label noise. In addition, we provide finite-sample performance guarantees for RMBoost with respect to the error obtained without noise and with respect to the best possible error (Bayes risk). The experimental results corroborate that RMBoost is not only resilient to label noise but can also provide strong classification accuracy.

View on arXiv
Comments on this paper