ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.13681
120
1

How Sampling Affects the Detectability of Machine-written texts: A Comprehensive Study

15 October 2025
Matthieu Dubois
François Yvon
Pablo Piantanida
    DeLMO
ArXiv (abs)PDFHTMLGithub (6★)
Main:9 Pages
7 Figures
Bibliography:4 Pages
9 Tables
Appendix:6 Pages
Abstract

As texts generated by Large Language Models (LLMs) are ever more common and often indistinguishable from human-written content, research on automatic text detection has attracted growing attention. Many recent detectors report near-perfect accuracy, often boasting AUROC scores above 99\%. However, these claims typically assume fixed generation settings, leaving open the question of how robust such systems are to changes in decoding strategies. In this work, we systematically examine how sampling-based decoding impacts detectability, with a focus on how subtle variations in a model's (sub)word-level distribution affect detection performance. We find that even minor adjustments to decoding parameters - such as temperature, top-p, or nucleus sampling - can severely impair detector accuracy, with AUROC dropping from near-perfect levels to 1\% in some settings. Our findings expose critical blind spots in current detection methods and emphasize the need for more comprehensive evaluation protocols. To facilitate future research, we release a large-scale dataset encompassing 37 decoding configurations, along with our code and evaluation frameworkthis https URL

View on arXiv
Comments on this paper