All Papers
Title |
|---|
Title |
|---|

Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in Stochastic Gradient Langevin Dynamics (SGLD)-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and Projected Gradient Descent (PGD)-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training strategy that addresses normalization-related instabilities and enables leveraging pretrained robust classifiers, generalizing effectively across diverse architectures. Experiments on CIFAR-10/100 and ImageNet demonstrate that our approach: (1) is the first EBM-based hybrid to scale to high-resolution datasets with high training stability, simultaneously achieving state-of-the-art discriminative and generative performance on ImageNet 256256; (2) uniquely combines generative quality with adversarial robustness, enabling critical applications like robust counterfactual explanations; and (3) functions as a competitive standalone generative model, matching the generative quality of autoregressive methods (VAR-d16) and surpassing diffusion models while offering unique versatility.
View on arXiv