ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.13891
36
1

K-frames: Scene-Driven Any-k Keyframe Selection for long video understanding

14 October 2025
Yifeng Yao
Yike Yun
Jing Wang
Huishuai Zhang
Dongyan Zhao
Ke Tian
Zhihao Wang
Minghui Qiu
Tao Wang
    CLIPVGen
ArXiv (abs)PDFHTML
Main:9 Pages
20 Figures
Bibliography:3 Pages
11 Tables
Appendix:11 Pages
Abstract

Multimodal Large Language Models (MLLMs) have demonstrated significant capabilities in image understanding, but long-video are constrained by context windows and computational cost. Uniform frame sampling often leads to substantial information loss. Meanwhile existing keyframe selection methods such as text-frame retrieval or RL-based frame optimization typically yield sparse and temporally disjointed frames, overlooking scene continuity and lacking flexibility for multi-scale frame selection. To address these limitations, we introduce K-frames, a novel paradigm for scene-driven keyframe selection that preserves temporal continuity. Instead of selecting individual frames, K-frames predicts semantically coherent, query-relevant clips, which enables any-k keyframes selection to meet diverse user budgets. To achieve this approach, we first introduce PeakClips, a dataset of 200K video highlights conditioned by query. Building on this dataset, K-frames learns clip2frame selection using a three-stage progressive curriculum. It involves two Supervised Fine-Tuning stages for temporal grounding and key-clip perception, followed by a Reinforcement Learning stage that directly optimizes the scene-driven prediction policy for downstream task without further annotations. Extensive experiments on major long-video understanding benchmarks demonstrate that K-frames provides an effective, interpretable, and plug-and-play solution for keyframe selection at various scales. Our dataset and model will be available.

View on arXiv
Comments on this paper