55

QCFace: Image Quality Control for boosting Face Representation & Recognition

Main:7 Pages
12 Figures
Bibliography:4 Pages
14 Tables
Appendix:10 Pages
Abstract

Recognizability, a key perceptual factor in human face processing, strongly affects the performance of face recognition (FR) systems in both verification and identification tasks. Effectively using recognizability to enhance feature representation remains challenging. In deep FR, the loss function plays a crucial role in shaping how features are embedded. However, current methods have two main drawbacks: (i) recognizability is only partially captured through soft margin constraints, resulting in weaker quality representation and lower discrimination, especially for low-quality or ambiguous faces; (ii) mutual overlapping gradients between feature direction and magnitude introduce undesirable interactions during optimization, causing instability and confusion in hypersphere planning, which may result in poor generalization, and entangled representations where recognizability and identity are not cleanly separated. To address these issues, we introduce a hard margin strategy - Quality Control Face (QCFace), which overcomes the mutual overlapping gradient problem and enables the clear decoupling of recognizability from identity representation. Based on this strategy, a novel hard-margin-based loss function employs a guidance factor for hypersphere planning, simultaneously optimizing for recognition ability and explicit recognizability representation. Extensive experiments confirm that QCFace not only provides robust and quantifiable recognizability encoding but also achieves state-of-the-art performance in both verification and identification benchmarks compared to existing recognizability-based losses.

View on arXiv
Comments on this paper