108

Quantization-Based Score Calibration for Few-Shot Keyword Spotting with Dynamic Time Warping in Noisy Environments

Main:3 Pages
3 Figures
Bibliography:2 Pages
2 Tables
Abstract

Detecting occurrences of keywords with keyword spotting (KWS) systems requires thresholding continuous detection scores. Selecting appropriate thresholds is a non-trivial task, typically relying on optimizing the performance on a validation dataset. However, such greedy threshold selection often leads to suboptimal performance on unseen data, particularly in varying or noisy acoustic environments or few-shot settings. In this work, we investigate detection threshold estimation for template-based open-set few-shot KWS using dynamic time warping on noisy speech data. To mitigate the performance degradation caused by suboptimal thresholds, we propose a score calibration approach consisting of two different steps: quantizing embeddings and normalizing detection scores using the quantization error prior to thresholding. Experiments on KWS-DailyTalk with simulated high frequency radio channels show that the proposed calibration approach simplifies the choice of detection thresholds and significantly improves the resulting performance.

View on arXiv
Comments on this paper