ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.15556
149
0

Diffusion Bridge Networks Simulate Clinical-grade PET from MRI for Dementia Diagnostics

17 October 2025
Yitong Li
Ralph Buchert
B. Schmitz-Koep
Timo Grimmer
Björn Ommer
D. Hedderich
Igor Yakushev
Christian Wachinger
    MedIm
ArXiv (abs)PDFHTMLGithub
Main:39 Pages
7 Figures
Bibliography:5 Pages
2 Tables
Abstract

Positron emission tomography (PET) with 18F-Fluorodeoxyglucose (FDG) is an established tool in the diagnostic workup of patients with suspected dementing disorders. However, compared to the routinely available magnetic resonance imaging (MRI), FDG-PET remains significantly less accessible and substantially more expensive. Here, we present SiM2P, a 3D diffusion bridge-based framework that learns a probabilistic mapping from MRI and auxiliary patient information to simulate FDG-PET images of diagnostic quality. In a blinded clinical reader study, two neuroradiologists and two nuclear medicine physicians rated the original MRI and SiM2P-simulated PET images of patients with Alzheimer's disease, behavioral-variant frontotemporal dementia, and cognitively healthy controls. SiM2P significantly improved the overall diagnostic accuracy of differentiating between three groups from 75.0% to 84.7% (p<0.05). Notably, the simulated PET images received higher diagnostic certainty ratings and achieved superior interrater agreement compared to the MRI images. Finally, we developed a practical workflow for local deployment of the SiM2P framework. It requires as few as 20 site-specific cases and only basic demographic information. This approach makes the established diagnostic benefits of FDG-PET imaging more accessible to patients with suspected dementing disorders, potentially improving early detection and differential diagnosis in resource-limited settings. Our code is available atthis https URL.

View on arXiv
Comments on this paper