ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.15577
100
0

BiMax: Bidirectional MaxSim Score for Document-Level Alignment

17 October 2025
Xiaotian Wang
T. Utsuro
Masaaki Nagata
ArXiv (abs)PDFHTMLGithub
Main:5 Pages
5 Figures
Bibliography:4 Pages
18 Tables
Appendix:13 Pages
Abstract

Document alignment is necessary for the hierarchical mining (Bañón et al., 2020; Morishita et al., 2022), which aligns documents across source and target languages within the same web domain. Several high precision sentence embedding-based methods have been developed, such as TK-PERT (Thompson and Koehn, 2020) and Optimal Transport (OT) (Clark et al., 2019; El-Kishky and Guzmán, 2020). However, given the massive scale of web mining data, both accuracy and speed must be considered. In this paper, we propose a cross-lingual Bidirectional Maxsim score (BiMax) for computing doc-to-doc similarity, to improve efficiency compared to the OT method. Consequently, on the WMT16 bilingual document alignment task, BiMax attains accuracy comparable to OT with an approximate 100-fold speed increase. Meanwhile, we also conduct a comprehensive analysis to investigate the performance of current state-of-the-art multilingual sentence embedding models. All the alignment methods in this paper are publicly available as a tool called EmbDA (this https URL).

View on arXiv
Comments on this paper