ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.15583
52
0

Attn-JGNN: Attention Enhanced Join-Graph Neural Networks

17 October 2025
Jixin Zhang
Yong Lai
    GNN
ArXiv (abs)PDFHTML
Main:13 Pages
5 Figures
Bibliography:5 Pages
3 Tables
Abstract

We propose an Attention Enhanced Join-Graph Neural Networks(Attn-JGNN) model for solving #SAT problems, which significantly improves the solving accuracy. Inspired by the Iterative Join Graph Propagation (IJGP) algorithm, Attn-JGNN uses tree decomposition to encode the CNF formula into a join-graph, then performs iterative message passing on the join-graph, and finally approximates the model number by learning partition functions. In order to further improve the accuracy of the solution, we apply the attention mechanism in and between clusters of the join-graphs, which makes Attn-JGNN pay more attention to the key variables and clusters in probabilistic inference, and reduces the redundant calculation. Finally, our experiments show that our Attn-JGNN model achieves better results than other neural network methods.

View on arXiv
Comments on this paper