ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.15691
165
0
v1v2v3 (latest)

Exploring the Synergy of Quantitative Factors and Newsflow Representations from Large Language Models for Stock Return Prediction

17 October 2025
Tian Guo
E. Hauptmann
    AIFinAI4TS
ArXiv (abs)PDFHTML
Main:11 Pages
17 Figures
Bibliography:5 Pages
15 Tables
Appendix:14 Pages
Abstract

In quantitative investing, return prediction supports various tasks, including stock selection, portfolio optimization, and risk management. Quantitative factors, such as valuation, quality, and growth, capture various characteristics of stocks. Unstructured data, like news and transcripts, has attracted growing attention, driven by recent advances in large language models (LLMs). This paper examines effective methods for leveraging multimodal factors and newsflow in return prediction and stock selection. First, we introduce a fusion learning framework to learn a unified representation from factors and newsflow representations generated by an LLM. Within this framework, we compare three methods of different architectural complexities: representation combination, representation summation, and attentive representations. Next, building on the limitation of fusion learning observed in empirical comparison, we explore the mixture model that adaptively combines predictions made by single modalities and their fusion. To mitigate the training instability of the mixture model, we introduce a decoupled training approach with theoretical insights. Finally, our experiments on real investment universes yield several insights into effective multimodal modeling of factors and news for stock return prediction and selection.

View on arXiv
Comments on this paper