ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.15770
96
0

Towards more holistic interpretability: A lightweight disentangled Concept Bottleneck Model

17 October 2025
Gaoxiang Huang
Songning Lai
Yutao Yue
ArXiv (abs)PDFHTML
Main:6 Pages
3 Figures
Bibliography:2 Pages
1 Tables
Abstract

Concept Bottleneck Models (CBMs) enhance interpretability by predicting human-understandable concepts as intermediate representations. However, existing CBMs often suffer from input-to-concept mapping bias and limited controllability, which restricts their practical value, directly damage the responsibility of strategy from concept-based methods. We propose a lightweight Disentangled Concept Bottleneck Model (LDCBM) that automatically groups visual features into semantically meaningful components without region annotation. By introducing a filter grouping loss and joint concept supervision, our method improves the alignment between visual patterns and concepts, enabling more transparent and robust decision-making. Notably, Experiments on three diverse datasets demonstrate that LDCBM achieves higher concept and class accuracy, outperforming previous CBMs in both interpretability and classification performance. By grounding concepts in visual evidence, our method overcomes a fundamental limitation of prior models and enhances the reliability of interpretable AI.

View on arXiv
Comments on this paper