MGTS-Net: Exploring Graph-Enhanced Multimodal Fusion for Augmented Time Series Forecasting
- AI4TS
Recent research in time series forecasting has explored integrating multimodal features into models to improve accuracy. However, the accuracy of such methods is constrained by three key challenges: inadequate extraction of fine-grained temporal patterns, suboptimal integration of multimodal information, and limited adaptability to dynamic multi-scale features. To address these problems, we propose MGTS-Net, a Multimodal Graph-enhanced Network for Time Series forecasting. The model consists of three core components: (1) a Multimodal Feature Extraction layer (MFE), which optimizes feature encoders according to the characteristics of temporal, visual, and textual modalities to extract temporal features of fine-grained patterns; (2) a Multimodal Feature Fusion layer (MFF), which constructs a heterogeneous graph to model intra-modal temporal dependencies and cross-modal alignment relationships and dynamically aggregates multimodal knowledge; (3) a Multi-Scale Prediction layer (MSP), which adapts to multi-scale features by dynamically weighting and fusing the outputs of short-term, medium-term, and long-term predictors. Extensive experiments demonstrate that MGTS-Net exhibits excellent performance with light weight and high efficiency. Compared with other state-of-the-art baseline models, our method achieves superior performance, validating the superiority of the proposed methodology.
View on arXiv