ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.16444
20
0

RefAtomNet++: Advancing Referring Atomic Video Action Recognition using Semantic Retrieval based Multi-Trajectory Mamba

18 October 2025
Kunyu Peng
Di Wen
Jia Fu
Jiamin Wu
Kailun Yang
Junwei Zheng
Ruiping Liu
Yufan Chen
Yuqian Fu
D. Paudel
Luc Van Gool
Rainer Stiefelhagen
ArXiv (abs)PDFHTML
Main:13 Pages
4 Figures
Bibliography:3 Pages
11 Tables
Abstract

Referring Atomic Video Action Recognition (RAVAR) aims to recognize fine-grained, atomic-level actions of a specific person of interest conditioned on natural language descriptions. Distinct from conventional action recognition and detection tasks, RAVAR emphasizes precise language-guided action understanding, which is particularly critical for interactive human action analysis in complex multi-person scenarios. In this work, we extend our previously introduced RefAVA dataset to RefAVA++, which comprises >2.9 million frames and >75.1k annotated persons in total. We benchmark this dataset using baselines from multiple related domains, including atomic action localization, video question answering, and text-video retrieval, as well as our earlier model, RefAtomNet. Although RefAtomNet surpasses other baselines by incorporating agent attention to highlight salient features, its ability to align and retrieve cross-modal information remains limited, leading to suboptimal performance in localizing the target person and predicting fine-grained actions. To overcome the aforementioned limitations, we introduce RefAtomNet++, a novel framework that advances cross-modal token aggregation through a multi-hierarchical semantic-aligned cross-attention mechanism combined with multi-trajectory Mamba modeling at the partial-keyword, scene-attribute, and holistic-sentence levels. In particular, scanning trajectories are constructed by dynamically selecting the nearest visual spatial tokens at each timestep for both partial-keyword and scene-attribute levels. Moreover, we design a multi-hierarchical semantic-aligned cross-attention strategy, enabling more effective aggregation of spatial and temporal tokens across different semantic hierarchies. Experiments show that RefAtomNet++ establishes new state-of-the-art results. The dataset and code are released atthis https URL.

View on arXiv
Comments on this paper