88

NP-Engine: Empowering Optimization Reasoning in Large Language Models with Verifiable Synthetic NP Problems

Main:9 Pages
3 Figures
Bibliography:2 Pages
5 Tables
Appendix:7 Pages
Abstract

Large Language Models (LLMs) have shown strong reasoning capabilities, with models like OpenAI's O-series and DeepSeek R1 excelling at tasks such as mathematics, coding, logic, and puzzles through Reinforcement Learning with Verifiable Rewards (RLVR). However, their ability to solve more complex optimization problems - particularly NP-hard tasks - remains underexplored. To bridge this gap, we propose NP-ENGINE, the first comprehensive framework for training and evaluating LLMs on NP-hard problems. NP-ENGINE covers 10 tasks across five domains, each equipped with (i) a controllable instance generator, (ii) a rule-based verifier, and (iii) a heuristic solver that provides approximate optimal solutions as ground truth. This generator-verifier-heuristic pipeline enables scalable and verifiable RLVR training under hierarchical difficulties. We also introduce NP-BENCH, a benchmark derived from NP-ENGINE-DATA, specifically designed to evaluate LLMs' ability to tackle NP-hard level reasoning problems, focusing not only on feasibility but also on solution quality. Additionally, we present QWEN2.5-7B-NP, a model trained via zero-RLVR with curriculum learning on Qwen2.5-7B-Instruct, which significantly outperforms GPT-4o on NP-BENCH and achieves SOTA performance with the same model size. Beyond in-domain tasks, we demonstrate that RLVR training on NP-ENGINE-DATA enables strong out-of-domain (OOD) generalization to reasoning tasks (logic, puzzles, math, and knowledge), as well as non-reasoning tasks such as instruction following. We also observe a scaling trend: increasing task diversity improves OOD generalization. These findings suggest that task-rich RLVR training is a promising direction for advancing LLM's reasoning ability, revealing new insights into the scaling laws of RLVR.

View on arXiv
Comments on this paper