ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.17984
63
0

QINNs: Quantum-Informed Neural Networks

20 October 2025
Aritra Bal
Markus Klute
Benedikt Maier
Melik Oughton
Eric Pezone
Michael Spannowsky
    AI4CE
ArXiv (abs)PDFHTML
Main:17 Pages
9 Figures
Bibliography:3 Pages
Abstract

Classical deep neural networks can learn rich multi-particle correlations in collider data, but their inductive biases are rarely anchored in physics structure. We propose quantum-informed neural networks (QINNs), a general framework that brings quantum information concepts and quantum observables into purely classical models. While the framework is broad, in this paper, we study one concrete realisation that encodes each particle as a qubit and uses the Quantum Fisher Information Matrix (QFIM) as a compact, basis-independent summary of particle correlations. Using jet tagging as a case study, QFIMs act as lightweight embeddings in graph neural networks, increasing model expressivity and plasticity. The QFIM reveals distinct patterns for QCD and hadronic top jets that align with physical expectations. Thus, QINNs offer a practical, interpretable, and scalable route to quantum-informed analyses, that is, tomography, of particle collisions, particularly by enhancing well-established deep learning approaches.

View on arXiv
Comments on this paper