97

Chain-of-Thought Reasoning Improves Context-Aware Translation with Large Language Models

Main:7 Pages
20 Figures
Bibliography:4 Pages
20 Tables
Appendix:18 Pages
Abstract

This paper assesses the capacity of large language models (LLMs) to translate texts that include inter-sentential dependencies. We use the English-French DiscEvalMT benchmark (Bawden et al., 2018) with pairs of sentences containing translation challenges either for pronominal anaphora or for lexical cohesion. We evaluate 12 LLMs from the DeepSeek-R1, GPT, Llama, Mistral and Phi families on two tasks: (1) distinguishing a correct translation from a wrong but plausible one; (2) generating a correct translation. We compare prompts that encourage chain-of-thought reasoning with those that do not. The best models take advantage of reasoning and reach about 90% accuracy on the first task, and COMET scores of about 92% on the second task, with GPT-4, GPT-4o and Phi standing out. Moreover, we observe a "wise get wiser" effect: the improvements through reasoning are positively correlated with the scores of the models without reasoning.

View on arXiv
Comments on this paper