ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.18321
99
0

Beyond Single Models: Mitigating Multimodal Hallucinations via Adaptive Token Ensemble Decoding

21 October 2025
Jinlin Li
Y. X. R. Wang
Yifei Yuan
Xiao Zhou
Y. Zhang
Xixian Yong
Yefeng Zheng
X. Wu
    MLLM
ArXiv (abs)PDFHTMLGithub
Main:13 Pages
11 Figures
Bibliography:1 Pages
9 Tables
Appendix:10 Pages
Abstract

Large Vision-Language Models (LVLMs) have recently achieved impressive results in multimodal tasks such as image captioning and visual question answering. However, they remain prone to object hallucination -- generating descriptions of nonexistent or misidentified objects. Prior work has partially mitigated this via auxiliary training objectives or external modules, but challenges remain in terms of scalability, adaptability, and model independence. To address these limitations, we propose Adaptive Token Ensemble Decoding (ATED), a training-free, token-level ensemble framework that mitigates hallucination by aggregating predictions from multiple LVLMs during inference. ATED dynamically computes uncertainty-based weights for each model, reflecting their reliability at each decoding step. It also integrates diverse decoding paths to improve contextual grounding and semantic consistency. Experiments on standard hallucination detection benchmarks demonstrate that ATED significantly outperforms state-of-the-art methods, reducing hallucination without compromising fluency or relevance. Our findings highlight the benefits of adaptive ensembling and point to a promising direction for improving LVLM robustness in high-stakes applications. The code is available atthis https URL.

View on arXiv
Comments on this paper