ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.18352
56
0

Computable universal online learning

21 October 2025
Dariusz Kalociński
Tomasz Steifer
ArXiv (abs)PDFHTML
Main:11 Pages
Bibliography:3 Pages
Appendix:4 Pages
Abstract

Understanding when learning is possible is a fundamental task in the theory of machine learning. However, many characterizations known from the literature deal with abstract learning as a mathematical object and ignore the crucial question: when can learning be implemented as a computer program? We address this question for universal online learning, a generalist theoretical model of online binary classification, recently characterized by Bousquet et al. (STOC'21). In this model, there is no hypothesis fixed in advance; instead, Adversary -- playing the role of Nature -- can change their mind as long as local consistency with the given class of hypotheses is maintained. We require Learner to achieve a finite number of mistakes while using a strategy that can be implemented as a computer program. We show that universal online learning does not imply computable universal online learning, even if the class of hypotheses is relatively easy from a computability-theoretic perspective. We then study the agnostic variant of computable universal online learning and provide an exact characterization of classes that are learnable in this sense. We also consider a variant of proper universal online learning and show exactly when it is possible. Together, our results give a more realistic perspective on the existing theory of online binary classification and the related problem of inductive inference.

View on arXiv
Comments on this paper