167
v1v2 (latest)

Guiding diffusion models to reconstruct flow fields from sparse data

Main:19 Pages
23 Figures
10 Tables
Abstract

The reconstruction of unsteady flow fields from limited measurements is a challenging and crucial task for many engineering applications. Machine learning models are gaining popularity for solving this problem due to their ability to learn complex patterns from data and to generalize across diverse conditions. Among these, diffusion models have emerged as being particularly powerful for generative tasks, producing high-quality samples by iteratively refining noisy inputs. In contrast to other methods, these generative models are capable of reconstructing the smallest scales of the fluid spectrum. In this work, we introduce a novel sampling method for diffusion models that enables the reconstruction of high-fidelity samples by guiding the reverse process using the available sparse data. Moreover, we enhance the reconstructions with available physics knowledge using a conflict-free update method during training. To evaluate the effectiveness of our method, we conduct experiments on 2 and 3-dimensional turbulent flow data. Our method consistently outperforms other diffusion-based methods in predicting the fluid's structure and in pixel-wise accuracy. This study underscores the remarkable potential of diffusion models in reconstructing flow field data, paving the way for leveraging them in fluid dynamics research and applications ranging from super-resolution to reconstructions of experiments.

View on arXiv
Comments on this paper