ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.20281
28
2

Causal Debiasing for Visual Commonsense Reasoning

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2025
23 October 2025
Jiayi Zou
Gengyun Jia
Bing-Kun Bao
    CML
ArXiv (abs)PDFHTML
Main:4 Pages
3 Figures
Bibliography:1 Pages
Abstract

Visual Commonsense Reasoning (VCR) refers to answering questions and providing explanations based on images. While existing methods achieve high prediction accuracy, they often overlook bias in datasets and lack debiasing strategies. In this paper, our analysis reveals co-occurrence and statistical biases in both textual and visual data. We introduce the VCR-OOD datasets, comprising VCR-OOD-QA and VCR-OOD-VA subsets, which are designed to evaluate the generalization capabilities of models across two modalities. Furthermore, we analyze the causal graphs and prediction shortcuts in VCR and adopt a backdoor adjustment method to remove bias. Specifically, we create a dictionary based on the set of correct answers to eliminate prediction shortcuts. Experiments demonstrate the effectiveness of our debiasing method across different datasets.

View on arXiv
Comments on this paper