AURASeg: Attention Guided Upsampling with Residual Boundary-Assistive Refinement for Drivable-Area Segmentation
Free space ground segmentation is essential to navigate autonomous robots, recognize drivable zones, and traverse efficiently. Fine-grained features remain challenging for existing segmentation models, particularly for robots in indoor and structured environments. These difficulties arise from ineffective multi-scale processing, suboptimal boundary refinement, and limited feature representation. To address this, we propose Attention-Guided Upsampling with Residual Boundary-Assistive Refinement (AURASeg), a ground-plane semantic segmentation framework designed to improve border precision while preserving strong region accuracy. Built on a ResNet-50 backbone, AURASeg introduces (i) a Residual Border Refinement Module (RBRM) that enhances edge delineation through boundary-assistive feature refinement, and (ii) Attention Progressive Upsampling Decoder (APUD) blocks that progressively fuse multi-level features during decoding. Additionally, we integrate a (iii) lightweight ASPPLite module to capture multi-scale context with minimal overhead. Extensive experiments on CARL-D, the Ground Mobile Robot Perception (GMRP) dataset, and a custom Gazebo indoor dataset show that AURASeg consistently outperforms strong baselines, with notable gains in boundary metrics. Finally, we demonstrate real-time deployment on a Kobuki TurtleBot, validating practical usability. The code is available atthis https URL
View on arXiv