Equivariance by Contrast: Identifiable Equivariant Embeddings from Unlabeled Finite Group Actions

We propose Equivariance by Contrast (EbC) to learn equivariant embeddings from observation pairs , where is drawn from a finite group acting on the data. Our method jointly learns a latent space and a group representation in which group actions correspond to invertible linear maps -- without relying on group-specific inductive biases. We validate our approach on the infinite dSprites dataset with structured transformations defined by the finite group , combining discrete rotations and periodic translations. The resulting embeddings exhibit high-fidelity equivariance, with group operations faithfully reproduced in latent space. On synthetic data, we further validate the approach on the non-abelian orthogonal group and the general linear group . We also provide a theoretical proof for identifiability. While broad evaluation across diverse group types on real-world data remains future work, our results constitute the first successful demonstration of general-purpose encoder-only equivariant learning from group action observations alone, including non-trivial non-abelian groups and a product group motivated by modeling affine equivariances in computer vision.
View on arXiv