ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.22266
82
0
v1v2 (latest)

A Multi-level Analysis of Factors Associated with Student Performance: A Machine Learning Approach to the SAEB Microdata

25 October 2025
Rodrigo Tertulino
Ricardo Almeida
ArXiv (abs)PDFHTML
Main:24 Pages
3 Figures
Bibliography:7 Pages
1 Tables
Abstract

Identifying the factors that influence student performance in basic education is a central challenge for formulating effective public policies in Brazil. This study introduces a multi-level machine learning approach to classify the proficiency of 9th-grade and high school students using microdata from the System of Assessment of Basic Education (SAEB). Our model uniquely integrates four data sources: student socioeconomic characteristics, teacher professional profiles, school indicators, and director management profiles. A comparative analysis of four ensemble algorithms confirmed the superiority of a Random Forest model, which achieved 90.2% accuracy and an Area Under the Curve (AUC) of 96.7%. To move beyond prediction, we applied Explainable AI (XAI) using SHAP, which revealed that the school's average socioeconomic level is the most dominant predictor, demonstrating that systemic factors have a greater impact than individual characteristics in isolation. The primary conclusion is that academic performance is a systemic phenomenon deeply tied to the school's ecosystem. This study provides a data-driven, interpretable tool to inform policies aimed at promoting educational equity by addressing disparities between schools.

View on arXiv
Comments on this paper