SARVLM: A Vision Language Foundation Model for Semantic Understanding and Target Recognition in SAR Imagery
- VLM

Synthetic Aperture Radar (SAR) is a crucial imaging modality thanks to its all-weather capability. Although recent advances in self-supervised learning and masked image modeling (MIM) have enabled SAR foundation models, these methods largely emphasize low-level visual features and often overlook multimodal alignment and zero-shot target recognition in SAR imagery. To address this, we construct SARVLM-1M, a large-scale vision-language dataset with over one million image-text pairs aggregated from existing datasets. We further propose a domain transfer training strategy to mitigate the large gap between natural and SAR imagery. Building on this, we develop SARVLM, the first vision language foundation model (VLM) tailored to SAR, comprising SARCLIP and SARCap. SARVLM is trained with a vision-language contrastive objective under the proposed domain transfer strategy, bridging SAR imagery and textual descriptions. Extensive experiments on image text retrieval, zero-shot classification, semantic localization, and imagery captioning demonstrate that SARVLM delivers superior feature extraction and interpretation, outperforming state-of-the-art VLMs and advancing SAR semantic understanding. Code and datasets will be released soon.
View on arXiv