ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.24577
261
0
v1v2 (latest)

Physics-Informed Extreme Learning Machine (PIELM): Opportunities and Challenges

28 October 2025
He Yang
Fei Ren
Francesco Calabro
H. Yu
Xiaohui Chen
    PINNAI4CE
ArXiv (abs)PDFHTML
Main:23 Pages
Abstract

We are very delighted to see the fast development of physics-informed extreme learning machine (PIELM) in recent years for higher computation efficiency and accuracy in physics-informed machine learning. As a summary or review on PIELM is currently not available, we would like to take this opportunity to show our perspective and experience for this promising research direction. We can see many efforts are made to solve PDEs with sharp gradients, nonlinearities, high-frequency behavior, hard constraints, uncertainty, multiphysics coupling. Despite the success, many urgent challenges remain to be tackled, which also provides us opportunities to develop more robust, interpretable, and generalizable PIELM frameworks with applications in science and engineering.

View on arXiv
Comments on this paper