81

Graph Distance Based on Cause-Effect Estimands with Latents

Zhufeng Li
Niki Kilbertus
Main:7 Pages
7 Figures
Bibliography:4 Pages
7 Tables
Appendix:7 Pages
Abstract

Causal discovery aims to recover graphs that represent causal relations among given variables from observations, and new methods are constantly being proposed. Increasingly, the community raises questions about how much progress is made, because properly evaluating discovered graphs remains notoriously difficult, particularly under latent confounding. We propose a graph distance measure for acyclic directed mixed graphs (ADMGs) based on the downstream task of cause-effect estimation under unobserved confounding. Our approach uses identification via fixing and a symbolic verifier to quantify how graph differences distort cause-effect estimands for different treatment-outcome pairs. We analyze the behavior of the measure under different graph perturbations and compare it against existing distance metrics.

View on arXiv
Comments on this paper