ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.25372
127
0

Prompt Estimation from Prototypes for Federated Prompt Tuning of Vision Transformers

29 October 2025
M Yashwanth
Sharannya Ghosh
Aditay Tripathi
Anirban Chakraborty
    VPVLMVLM
ArXiv (abs)PDFHTML
Main:11 Pages
11 Figures
Bibliography:4 Pages
14 Tables
Appendix:13 Pages
Abstract

Visual Prompt Tuning (VPT) of pre-trained Vision Transformers (ViTs) has proven highly effective as a parameter-efficient fine-tuning technique for adapting large models to downstream tasks with limited data. Its parameter efficiency makes it particularly suitable for Federated Learning (FL), where both communication and computation budgets are often constrained. However, global prompt tuning struggles to generalize across heterogeneous clients, while personalized tuning overfits to local data and lacks generalization. We propose PEP-FedPT (Prompt Estimation from Prototypes for Federated Prompt Tuning), a unified framework designed to achieve both generalization and personalization in federated prompt tuning of ViTs. Within this framework, we introduce the novel Class-Contextualized Mixed Prompt (CCMP) - based on class-specific prompts maintained alongside a globally shared prompt. For each input, CCMP adaptively combines class-specific prompts using weights derived from global class prototypes and client class priors. This approach enables per-sample prompt personalization without storing client-dependent trainable parameters. The prompts are collaboratively optimized via traditional federated averaging technique on the same. Comprehensive evaluations on CIFAR-100, TinyImageNet, DomainNet, and iNaturalist datasets demonstrate that PEP-FedPT consistently surpasses the state-of-the-art baselines under diverse data heterogeneity scenarios, establishing a strong foundation for efficient and generalizable federated prompt tuning of Vision Transformers.

View on arXiv
Comments on this paper